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ABSTRACT

Case depth measurements of surface hardened steel parts are important for quality control.

The magnetic properties, including initial permeability, differential permeability and satura-

tion magnetization of a series of induction-hardened and carburized steel rods were studied

through measurements, with the aim of developing new methods to evaluate the case depth

nondestructively. Four-point alternating current potential drop (ACPD) method also has the

potential to evaluate different case depths. The potential drop was measured on a series of

1” diameter induction-hardened and carburized steel rod samples using a co-linear probe with

pins aligned parallel to the axis of the rod.

For comparison with the above-mentioned electromagnetic measurements, hardness profiles

were obtained by microhardness measurements.

It seems that measurements of initial permeability on surface hardened rods do not give a

clear indication of case depth. Differential permeability was plotted versus applied magnetic

field H. It is interesting to see that, when H is around 18 Oe, the differential permeability in-

creases more-or-less in the sequence of case depth d in induction hardened samples. Differential

permeability measurements give a good indication of case depth in induction hardened rods,

but not carburized rods. The saturation magnetization decreases as the case depth increases.

It was shown that four-point ACPD is a promising technique for distinguishing between dif-

ferent depths of case hardening. Especially in the low-frequency range of the real part of the

normalized impedance, there is very good distinction between the case depths of the samples.
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CHAPTER 1. OVERVIEW

Case hardening, or surface hardening, is a process which includes techniques used to im-

prove the wear resistance of metal (often low-carbon steel) parts by hardening the surface

without influencing the softer core. The combination of strength at the surface and ductility

at the core is useful in parts like camshafts that must be very hard on the outside to resist

wear but softer inside to resist impact produced in operation.

The conductivity and permeability of steel will change during the case hardening process.

Therefore, case depth can be evaluated nondestructively by detecting the difference of the

electric and/or magnetic characteristic using the electromagnetic methods [1].

1.1 Motivation

Compared to no treatment, case hardening increases the service life of components. Case

hardening has advantages over through-hardening because it reduces heat treatment cycle

time and cost. Also, case hardening is used on low-carbon steel which is less expensive than

medium and high-carbon steels, while the through-hardening process is used on medium and

high carbon steels.

Moreover, case hardening reduces cost of time and energy by treating only the surface area

and limited inner area while through hardening treats the entire part.

Case depth measurements are important for quality control of surface-hardened steel parts

and the heat treating process. The standard method of determining case depth is the micro-

hardness test, in which indentions are made from the surface to the core of polished samples

to determine the corresponding hardness values. This method is destructive and time con-

suming. There have been many efforts to evaluate the hardness and case depth using new
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methods, which include magnetic characterization, four-point probes and image processing. In

this thesis, magnetic properties including initial permeability and differential permeability, as

well as saturation magnetization of case hardened steel rods were studied to evaluate the case

depth. Four-point ACPD measurements were also made on the surface-hardened samples for

case depth evaluation.

1.2 Case hardening process

In order to improve both the wear resistance and the fatigue strength of steel components

under dynamic and/or thermal stresses, parts are often subject to the process of case hardening,

which makes the surface layer, known as the case, significantly harder than the residual ma-

terial, known as the core. Case hardening methods include induction-hardening, carburizing,

nitriding, carbonitriding, cyaniding and flame hardening. Chemical composition, mechanical

properties, or both are affected by the process. Case hardness depth, or the thickness of the

hardened layer, is an important quality attribute of the case hardening process.

The microstructure of steel changes during the case hardening process. The untreated steels

are two phase mixture of α-Fe (ferrite) and Fe3C (cementite) as can be seen from Figure 1.1.

The crystal structure of ferrite is body centered cubic (BCC). A typical heat treatment usually

starts with an austenitization treatment where the ferrite (α-Fe, BCC) phase transforms to

the austenite (γ-Fe, FCC) and all carbides are dissolved in the austenite. The temperature of

the austenitization treatment varies for different steels but usually is in the range 1500◦F −

−1900◦F.

The microstructure of the case is transformed to martensite to achieve higher hardness

values. Martensite is a single-phase structure that is formed when austenitized iron-carbon

alloys are rapidly cooled (or quenched) to a relatively low temperature [2]. The martensitic

transformation occurs when the quenching rate is rapid enough to prevent carbon diffusion.

Ferrite and cementite phases will form if diffusion occurs.

Induction-hardened and carburized samples are studied through this thesis, so the induction

hardening and carburizing process will be introduced in the next few paragraphs.
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Figure 1.1 Iron carbon phase diagram (Source: [3])

1.2.1 Induction hardening

Induction hardening is widely used for the surface hardening of steel parts. The components

are heated by electromagnetic induction to a temperature within or above the transformation

range and then quenched. High frequency alternating current is passed through an electro-

magnet of the induction heater, which induces eddy currents in the work piece. The induced

current flow within the work piece is most intense on the surface, and decays rapidly below the

surface. The outside will heat more quickly than the inside. The core of the sample remains

unaffected by the treatment and its physical properties are the same as those of the bar from

which it was machined while the case undergoes a martensitic transformation, which increases

the hardness and brittleness of the part.
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Figure 1.2 Crystal structure. (a) Unit cell in a ferrite crystal. Body–
centered cubic (BCC). (b) Unit cell in an austenite crystal.
Face-centered cubic (FCC). (c) Unit cell in a martensite crystal.
Body-centered tetragonal (BCT). (Source: [4])

1.2.2 Carburizing

Carburizing is a case hardening process which adds carbon to the surface of low carbon

steels (generally have base carbon contents of about 0.2% at temperatures between 850 and

950◦C (1560 and 1740◦F) to get high carbon austenite surface layer. After that the components

are quenched to form the high carbon martensite case that is more wear and fatigue resistant.

Case hardness of carburized components is primarily decided by carbon content while the case

depth of carburized steel is a function of carburizing time and the available carbon potential at

the surface. The carbon content of the case is usually controlled at between 0.8% and 1% and

the surface carbon is often limited to 0.9% to avoid retained austenite and brittle martensite.

Carburizing methods introduce carbon by using gas (atmospheric-gas, plasma, and vacuum

carburizing), liquids (salt bath carburizing) or solids (pack carburizing).

1.3 Review of case depth measurement methods

The magnetic hysteresis properties and Barkhausen effect (BE) signals were studied in [5]

to evaluate the case depth of a series of induction-hardened AISI 1045 steel rods. It was
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assumed that the case depth is uniform and the induction signal from the entire rod Brod(H)

is the sum of the induction of the case Bcase(H) and that of the core Bcore(H) weighed by the

corresponding volume fractions:

Brod(H) = Vc ×Bcase(H) + (1− Vc)×Bcore(H), (1.1)

where Vc is the induction signal from the entire rod. Bcore(H) and Bcase(H) were measured

from strip samples that were cut from the core and the surface layer of the hardened steel rods.

After finding Vc from the above equation, the case depth dc vas evaluated from by

dc =
1
2
D(1−

√
1− Vc), (1.2)

where D is the diameter of the steel rods. For samples with nominal case depth of 1.03, 1.45

and 1.95 mm, the percentage difference between the midpoint of hardness depth profile and

the estimated case depth is -3.3%, -3.6% and 0.6%.

The magnetic Barkhausen emission (BE) profiles of the case carburized G86200 and G33106

steel sample was studied in [6]. The ratio of the two Barkhausen peaks was correlated to the

case depth. The study showed that the magnetic Barkhausen emission technique could be

used to detect the case depth below 1 mm more accurately. For components with a deeper

case depth, it is also possible to estimate the minimum remaining case depth after grinding

operations.

Magnetoacoustic emission (MAE) refers to the generation of elastic waves in ferromagnetic

materials subjected to a magnetic field. MAE can be regarded as a complementary technique

to BE, since MAE arises only from non-180◦ domain wall processes while BE is more sensitive

to 180◦ domain wall processes [7]. MAE measurements were made on ten rods and plates of

EN3B steel that were case-hardened by carbo-nitriding in [8]. The case depth thickness was

determined from the frequency dependence of MAE. For plates, linear correlation was observed

when measurements of the MAE I peak and area data were plotted versus the square root of

the frequency. Single curves of gradient of the MAE I peak and area data versus case thickness

could be developed. An accuracy of 10 percent for case depth less than 0.5mm and 20 percent

for depths up to 2 mm was obtained.
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Four-point direct current potential drop method was used to measure case depth in [9].

The experimental results confirmed that resistivity increases with hardening. The relationship

between potential drop and case depth for various probe arrangement on surface hardened

shaft like material with a diameter of 50 mm was analyzed. It was shown that the potential

drop V increases while the increasing rate ∂V/∂d decreases with the case depth d.

Vibrational resonance spectra obtained with noncontacting electromagnetic-acoustic trans-

ducers (EMATs) were studied in reference [10] to determine the case depth of surface hardened

steel shafts. A specific class of resonant modes were studied in 15.7-cm-long cut sections of

sixty-three carbon steel shafts with various case depths. The measured resonant frequencies of

the third mode were shown to be highly correlated with the 50 HRC case depth. For 63 shafts,

the curve of 50 HRC depth versus the frequency of the third axial-shear mode was obtained

by quadratic least squares fit to the data. The standard deviation of the fit is 0.13 mm on case

depths of between 3 and 5.6 mm.

A quantitative calibrated technique based on photothermal radiometric (PTR) depth-

profilometry for evaluating effective case depth in heat treated case-hardened steel products

was demonstrated in [11]. Three types of heat-treated and carburized C1018 industrial steel

screws with different case depths and screw heads (hexagonal, cylindrical and spherical) were

evaluated. Correlation/calibration curves for each type of sample were established using con-

ventional microhardness measurements. It was found that the PTR thermal-wave interfero-

metric phase minimum determination method is suitable for evaluating case depths ≥ 300µm

in this type of steel. It was shown that PTR phase minima can be used as a fast on-line

inspection method of industrial steel products for quality control of industrial heat treating

processes.

In another study, image processing was used to determine the case depth of the induction

hardened steel JIS S 45 C, 20 mm in diameter and 15 mm in length [12]. The specimens

were cut at a mid length, ground and etched with 10% nital and then scanned by a scanner.

The scanned images were evaluated by identifying the gray level difference using a developed

software. Compared to the microhardness test method, the developed method has a deviation
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of ±0.12 mm at the case depth range of 0.6-2.0 mm and ±0.14 at the range of 2.1-4.3 mm.

However, the program does not work when the steel was induction hardened more than once

and it is not suitable to measure case depth of carburized part. Also, it is not a practical NDE

option because it is essentially a destructive technique.
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CHAPTER 2. SAMPLE FABRICATION AND CHARACTERIZATION

2.1 Fabrication

Two sets of steel rods, induction hardened 1” diameter 4140 steel rods and carburized

1” diameter 8620 steel rods were prepared. AISI/SAE 4140 is considered a high-strength,

medium-carbon low-alloy steel [13]. Chemical compositions are given in Table 2.1. The steel

4140 is used for many high-strength machine parts (some of them nitrided) such as connecting

rods, crankshafts and pump parts. AISI/SAE 8620 is a hardenable low alloy steel often used

for carburizing to develop case-hardened parts. Its chemical composition ranges and limits

are given in Table 2.2. In the carburized condition, this alloy is used for gears, shafts and

crankshafts.

Table 2.1 Chemical compositions of 4140 steel (Source: [13])

Component Wt. %
C 0.38-0.43

Mn 0.75-1.00
Si 0.20-0.35
Cr 0.80-1.10
Mo 0.15-0.25

Table 2.2 Chemical compositions of 8620 steel (Source: [13])

Component Wt. %
C 0.17-0.23

Mn 0.60-0.90
Si 0.15-0.30
Cr 0.35-0.60
Mo 0.15-0.25
Ni 0.40-0.70



www.manaraa.com

9

The Lot ID, case depth and measured precise diameter values of the induction-hardened

sample set are provided in Table 2.3, while those for the carburized steel rods are given in

Table 2.4. We have two samples for each treatment, marked by -1 and -2 in the induction

hardened set, and by -A and -B in the carburized set. Processing information for the Induction

hardened 1” diameter 4140 steel rods is provided in Table 2.5.

Table 2.3 Parameters of induction hardened 4140 steel rods. 7397-1 and
7397-2 are baseline samples, they are heated but not hardened.
set1-1 and set1-2 are samples with no treatment. Measurement
points for diameters are chosen along different lines parallel to
the long axis of the rod.

Lot ID Nominal depth
of hardening
(mm)

Case depth mea-
sured by manufac-
turer (mm)

Diameter
(mm)

7393-1 0.75 0.724 25.6± 0.2
7393-2 0.75 0.724 25.8± 0.3
7394-1 1 1.008 25.9± 0.4
7394-2 1 1.008 26.1± 0.4
7395-1 2 2.075 26.0± 0.3
7395-2 2 2.075 26.4± 0.5
7396-1 3 3.071 26.3± 0.4
7396-2 3 3.071 26.5± 0.5
7397-1 0 0 26.6± 0.5
7397-2 0 0 26.6± 0.6
set1-1 0 0 26.1± 0.2
set1-2 0 0 26.0± 0.2

For carburized 1” diameter 8620 steel rods, all test rods were processed in Lindberg Pace-

maker Integral Quench furnaces (information supplied by Drew Manning, Process Metallurgist,

Advanced Heat Treat Corporation, Waterloo, IA). The atmosphere control in the furnaces uses

a nitrogen/methanol base system with carbon control fluctuation with additional gases. The

parts were loaded into the furnace vertically. After the heating cycle, the parts were quenched

after the heating cycle in 140− 160 ◦F agitated oil. The parts were washed in a parts washer

to remove any residual oil, and they were tempered at 300 ◦F for 2 hours.

Lot ID 6803 (0.5 mm) was heated at 1700 ◦F for approximately 2 hours at an approximate

1.0-wt% carbon potential. The parts were allowed to cool and equalize at 1550 ◦F and an



www.manaraa.com

10

Table 2.4 Parameters of carburized 8620 steel rods. 6840-A and 6840-B
are baseline samples, they are heated but not hardened. set3-1
and set3-2 are samples with no treatment. Measurement points
for diameters are chosen along one line parallel to the long axis
of the rod.

Lot ID Nominal depth
of hardening
(mm)

Case depth mea-
sured by manufac-
turer (mm)

Diameter
(mm)

6803-A 0.5 0.609 25.2± 0.2
6803-B 0.5 0.609 25.1± 0.2
6804-A 0.75 0.78 24.2± 0.1
6804-B 0.75 0.78 25.2± 0.1
6805-A 1 1.128 25.1± 0.1
6805-B 1 1.128 25.2± 0.3
6807-A 1.5-2 1.6 25.0± 0.2
6807-B 1.5-2 1.6 25.0± 0.2
6840-A 0 0 25.0± 0.2
6840-B 0 0 25.3± 0.2
set3-1 0 0 25.6± 0.3
set3-2 0 0 26.1± 0.3

approximate 0.85-wt% carbon potential prior to quenching.

Lot ID 6804 (0.75 mm) was heated at 1700 ◦F for approximately 5 hours at an approximate

1.0-wt% carbon potential. The parts were allowed to cool and equalize at 1550 ◦F and an

approximate 0.85-wt% carbon potential prior to quenching.

Lot ID 6805 (1.0 mm) was heated at 1700 ◦F for approximately 7.5 hours at an approximate

1.0-wt% carbon potential. The parts were allowed to cool and equalize at 1550 ◦F and an

approximate 0.85-wt% carbon potential prior to quenching.

Lot ID 6807 (1.5-2.0 mm) was heated at 1725 ◦F for approximately 19 hours at an approx-

imate 1.0-wt% carbon potential. The parts were allowed to cool and equalize at 1550 ◦F and

an approximate 0.75-wt% carbon potential prior to quenching.

Lot ID 6840 (baseline) was completely masked with “Condursal 0090” stop-off paint (http:

//www.duffycompany.com/Condursal_0090.htm) to prevent carburization. The parts were

then heated at 1700 ◦F for approximately 2 hours at an approximate 1.0-wt% carbon potential.

The parts were allowed to cool and equalize at 1550 ◦F and an approximate 0.85-wt% carbon

http://www.duffycompany.com/Condursal_0090.htm
http://www.duffycompany.com/Condursal_0090.htm
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Table 2.5 Processing information for induction hardened 1” diameter 4140
steel rods (information supplied by Drew Manning, Process Met-
allurgist, Advanced Heat Treat Corporation, Waterloo, IA).

lot
7393 7394 7395 7396 7397

Nominal case depth
50 HRC (mm)

0.75 1.00 2.00 3.00 0.00 (tem-
per only)

Induction machine
Power rating (kW) 150 150 150 200
Frequency rating
(kHz)

30 30 30 10

Quench
Percentage∗ 5-7% 5-7% 5-7% 4-6%
Pressure (PSI) 10 10 9-11 14-16
Temperature (◦F) 70-80 70-80 70-80 70-80
Temper
Time (hrs) 2 2 2 2 2
Temperature (◦F) 300 300 300 300 300

potential prior to quenching (this should be a nearly identical heat cycle as Lot ID 6803). This

method was utilized to best duplicate the core microstructure of the case hardened samples.

2.2 Hardness profiles

In order to make the microhardness measurements, samples were cut, mounted in bakelite,

ground and polished, some polished samples are shown in Figure 2.1. Cylindrical samples 1/2”

high were cut from the case hardened steel rods. Usually the edge tends to be polished more

than the other part of the sample during the polishing process, thus samples were mounted to

get better edge retention. The samples were polished starting from 600 GRIT, progressively

down to 6 micron diamond paste and further to 3 micron aluminum paste. The surface

smoothness was checked using optical microscope.

Microhardness profile measurements were made on both induction hardened rods and car-

burized rods using LECO LM247AT Microhardness Tester and Amh43 software. The indenter

load used was 1000 g. Three measurements were made on each sample, along the direction

of three diameters. One hardness profile for each induction hardened sample is presented in
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Figure 2.1 Samples that were cut, mounted, ground and polished.

Figure 2.2, while hardness profiles of the carburized samples are shown in Figure 2.3.

The measured data t (depth) and y (Vickers hardness) was fitted using the following equa-

tion with two linear parameter c1, c2 and two nonlinear parameters λ1, λ2

y = c1 × erfc
(

t− λ1

λ2

)
+ c2, (2.1)

where erfc(x) is the complementary error function defined by

erfc(x) =
2√
π

∫ ∞

x
e−t2 dt. (2.2)

λ1 gives the profile midpoint, λ2 is the transition width of the profile. 2c1 + c2 determines the

case hardness of the sample while c2 represents the core hardness. The change in the shape

of the fitted curve when c1, c2, λ1 or λ2 is changed is shown in Figure 2.4. In the Matlab

code, we first guess initial values for λ1 and λ2, then use the complementary error function to

calculate the complementary error. Then we do the least square regression analysis to estimate

the linear parameters c1 and c2(to minimize the sum of the square error).The fitted curves for

the induction hardened samples are given in Figure 2.5, while those for carburized samples are

given in Figure 2.6.

The fitted parameters for the induction hardened steel rods are give in Table 2.6, while those

for the carburized ones are given in Table 2.7. The fitted parameters shown are the average of

three fitting results for each sample, based on the measured data along three different diameters

when rotating the sample. The uncertainty is the standard deviation of three measurements. It
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Figure 2.2 Hardness profiles of induction hardened samples

is shown that the fitting errors for carburized steel rods are smaller than those for induction-

hardened sample. Complementary error function describes hardness profiles of carburized

rods better than for induction-hardened rods. That is because case hardness of the induction-

hardened sample is assumed to be constant during the fitting process, which is not true as can

be seen from the hardness profiles.

Table 2.6 Fitted parameters for induction hardened steel rods with uncer-
tainty obtained by comparing the results got from measurements
along three different diameters when rotating the sample.

Sample Case hardness
(Hv)

Core hardness
(Hv)

Fitting error
(Hv)

7396 595± 10 224± 4 71± 12
7395 614± 12 241± 2 113± 29
7394 595± 4 242± 2 94± 6
7393 557± 2 245± 2 47± 6

Mid-hardness depth measured by curve fitting to microhardness profiles with uncertainties

due to data scatter and rotation of rod is shown in Table 2.8 for induction-hardened rods
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Figure 2.3 Hardness profiles of carburized samples

and in Table 2.9 for carburized rods. Uncertainty of the profile depth due to data scatter is

calculated from

Uncertainty due to data scastter = Profile depth ∗Relative error, (2.3)

where

Relative error =
Fitting error

Case hardness− Core hardness
. (2.4)

Uncertainty of the profile depth due to rotation of the sample is the standard deviation of three

Table 2.7 Fitted parameters for carburized steel rods with uncertainty ob-
tained by comparing the results got from measurements along
three different diameters when rotating the sample.

Sample Case hardness
(Hv)

Core hardness
(Hv)

Fitting error
(Hv)

6807 759± 12 282± 4 36± 3
6805 758± 5 285± 3 50± 1
6804 752± 10 307± 8 32± 2
6803 801± 27 314± 6 36± 3
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Figure 2.4 Fitted curve when c1 = 182, c2 = 229, λ1 = 3273 and λ2 = 802
compared with the curve when (a) c1 is changed to 50, (b) c2

is changed to 0, (c) λ1 is changed to 1500, (d) λ2 is changed to
300.

mid-profile depths got by fitting one curve for each data set of the sample. The uncertainty of

the profile depth due to rotation of the rod is very small, which suggests that the case depth of

a surface-hardened steel rod could be considered uniform. It is smaller than the uncertainty of

profile depth due to scatter of data around fitted curve. Profile depth at 50 HRC is the value

of the fitted profile depth that corresponds to 510 Hv, which is equal to 50 HRC in Rockwell

unit.
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Table 2.8 Case depths of induction hardened steel rods.

Sample Profile depth
with uncer-
tainty due to
data scatter

Profile depth with
uncertainty due
to the rotation of
rod(mm)

Profile depth
at 50 HRC
(mm)

Manufacturer’s
depth at 50
HRC (mm)

7396 3.3± 0.6 3.30± 0.02 2.856 3.071
7395 2.3± 0.7 2.27± 0.04 2.175 2.075
7394 1.4± 0.4 1.43± 0.02 1.349 1.008
7393 0.9± 0.1 0.90± 0.04 0.805 0.724

Table 2.9 Case depths for carburized steel rods.

Sample Profile depth
with uncer-
tainty due to
data scatter

Profile depth with
uncertainty due
to the rotation of
rod(mm)

Profile depth
at 50 HRC
(mm)

Manufacturer’s
depth at 50
HRC (mm)

6807 1.6± 0.1 1.58± 0.02 1.613 1.600
6805 1.0± 0.1 0.97± 0.01 0.981 1.128
6804 0.80± 0.06 0.80± 0.02 0.853 0.78
6803 0.54± 0.04 0.54± 0.02 0.632 0.609

2.3 Summary

In this chapter, the induction-hardened and carburized steel rods were described and hard-

ness profiles of the samples were obtained. The chemical compositions, dimensions, processing

information of the samples were provided as some background information. Hardness pro-

files were obtained by micro-hardness measurements in order to make a comparison with the

electromagnetic measurements that will included in the next two chapters. The case depth,

case hardness and core hardness of the samples were found by curve fitting to microhardness

profiles and the uncertainties were analyzed.

In Chapter 3, the magnetic properties of the samples are studied to evaluate the case

depth. In Chapter 4, Four-point alternating potential drop (ACPD) measurements on the

surface-hardened samples are discussed.
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Figure 2.5 Fitted curves of induction hardened 1” diameter 4140 steel rods
with nominal case depth of (a) 0.75 mm, (b) 1 mm, (c) 2 mm,
(d) 3 mm.
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Figure 2.6 Fitted curves of carburized 1” diameter 8620 steel rods with
nominal case depth of (a) 0.5 mm, (b) 0.75 mm, (c) 1 mm, (d)
1.5-2 mm.
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CHAPTER 3. MAGNETIC TECHNIQUES

3.1 Introduction

The response of the ferro- or ferrimagnetic material when a magnetic field H is applied to

it is called its magnetic induction B. The magnetic induction B is the same as the density

of magnetic flux, Φ, inside the medium. So B is equal to the flux per unit area within a

material. The plot of B versus H is called a hysteresis loop, or the B-H loop. A lot of

information about magnetic properties of a material can be learned by studying its hysteresis

loop. The hysteresis loop of a ferromagnetic material is shown in Figure 3.1 with several

important parameters marked.

Figure 3.1 A hysteresis loop generated by measuring the magnetic flux
of a ferromagnetic material when the applied magnetic field is
changing. (Source: [14])
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The value of B (point b) when H is reduced to zero after saturation is the retentivity, or the

residual induction. The reversed H (point c) required to reduce B to zero is the coercivity. The

permeability µ is the ratio of B to H. The initial permeability µi describes the permeability of

a material at low values of B (below 0.1 T). Differential permeability is the slope of the B-H

loop for a magnetic material, given by dB/dH.

In cgs units, the equation relating B and H is

B = H + 4πM, (3.1)

where M is a property of the material, called the magnetization. The magnetization is defined

to be the magnetic moment per unit volume.

M =
m

V
. (3.2)

In the B-H plot for a ferri- and ferromagnetic material, the material starts at the origin in

an unmagnetized state and B follows the curve from 0 to the saturation point as H is increased

the in the positive direction. The valued of B at saturation is called the saturation induction

Bs and the value of M at saturation is the saturation magnetization Ms. M is constant after

saturation but B continues to increase because B = H + 4πM .

The magnetic properties, including initial permeability, differential permeability and satu-

ration magnetization of the induction-hardened and carburized steel rods are studied in this

chapter, with the aim of developing new methods to evaluate the case depth nondestructively.

3.2 Measurements of initial permeability

The initial permeability µi of case-hardened steel rods has been measured using a ‘Mag-

nescope’; a magnetic hysteresis measurement system developed in a collaborating DoE-sponsored

program at Ames Laboratory, Iowa State University. The purpose of the measurements was

to determine whether or not µi is strongly correlated with the depth of case hardening.

The Magnescope was used to demagnetize the samples and then plot the curves of magnetic

induction B as a function of applied magnetic field H. The range of H used was -0.5 to 3

Oe, while the range of B measured was approximately -50 to 300 Gauss. µi was calculated by
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fitting a second-order polynomial to the measured data. The polynomial used in the regression

is Y = A+B1 ∗X +B2 ∗X2, in which parameter B1 represents µi. Several measurements were

made on each sample to reduce the uncertainty in the measurements, as given in Table 3.1.

The uncertainty listed is the standard derivation of µi got from each measurement, which gets

smaller when the number of measurements gets bigger. One set of data obtained in this way

on sample 7396-1 (detailed in Table 3.1) is shown in Figure 3.2.

Figure 3.2 Example of finding µi by fitting a second order polynomial to
the measured data for each sample.

Initial permeability measurements were made on 2 similar steel rod samples induction-

hardened to depth 3.30 ± 0.02 mm, and 2 other similar rods that were heat treated but not

hardened. The results are given in Table 3.1. The value of µi measured for the samples
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Table 3.1 Measured initial permeability for surface-hardened and non-sur-
face-hardened steel rods.

Sample d (mm) Average µi No. of measurements Data points in each curve
7396-1 3.30± 0.02 80± 5 5 20
7397-1 0 74± 3 5 20
7396-2 3.30± 0.02 80± 2 6 20
7397-2 0 73± 1 10 20

that were nominally the same agreed within experimental uncertainty. However, the contrast

between values of µi measured for the surface-hardened and non-surface-hardened rods was

not strong. In fact, even for the strong contrast in case depth considered in this study (0

mm compared with 3.30 mm), the values of µi obtained were not distinct when experimental

uncertainty is taken in to account. It is concluded that µi is not a good indicator of case depth

and for this reason µi of other samples is not studied.

3.3 Measurements of differential permeability

Hysteresis loop measurements were completed on the induction hardened and carburized 1”

diameter steel rods. Magnetic field in the range of -130 Oe to 130 Oe was supplied by a solenoid

driven by a Kepco power supply. The range of measured B was -23000 to 23000 Gauss. The

sample was put into a plastic holder with inner diameter 2.61 cm and outer diameter 3.36 cm

so that the sample is held in the center of the solenoid. The plastic holder is 46.23 cm long and

it fits into the solenoid which is 54.36 cm long. A pick-up coil with 372 turns, which encircles

the middle part the plastic holder, was used to measure the induction B. The magnetic field H

is determined by the Hall sensor (In cgs, B and H are the same in the air) which is embedded

in the middle of the plastic holder and contacts the surface of the sample directly (Figure 3.3).

It was assumed that the direction of the magnetic field inside the middle part of the sample

is parallel to the axis of the cylinder and B is uniform in the cross-section of the middle part.

Because there is no surface electric current, the tangential components of the magnetic field

are continuous due to the boundary conditions. Thus the magnetic field measured by the Hall

sensor can be assumed to be the same as H inside the middle part of the sample.



www.manaraa.com

23

Figure 3.3 System set-up

Three hysteresis loops were measured on each sample, and the results averaged. The

measured data was processed so that the loops were shifted slightly on the B-H axes so that

their intercepts lay symmetrically about the zero point. This is common practice in analysis of

hysteresis loops, to correct for instrumentation drift in the measurements (Another approach is

to center the curves based on symmetry in their maximum values). Since the value of measured

B depends on flux linkage (B = φ/A, where φ is the magnetic flux and A is the cross-section

area of the sample), values of B were corrected for minor differences in the cross-sectional area

of the samples. The differential permeability, dB/dH, was calculated by finding the best fit

straight line to a sequence of five data points and assigning the slope to be the differential

permeability at the middle value of H.

Differential permeability is plotted versus H in the range of 0 to 30 Oe in Figure 3.4. It can

be seen that, at around 18 Oe, there is a peak in dB/dH for the case-hardened samples that

does not occur for the non-surface-hardened sample. This feature is shown in more detail in
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Figure 3.5. It is interesting to see that, when H is around 18 Oe, the differential permeability

increases more-or-less in the sequence of case depth d. The standard deviation in dB/dH,

computed from the three sets of measured hysteresis loops, is of the order 10 Gauss/Oe,

much less than the differences between dB/dH for the different samples. Figure 3.6 compares

results for sample 7397-1, which is heated but not hardened, with those for sample ‘set 1-1’,

which is ‘as received’ ie without any heat treatment at all. It can be seen that the differential

permeability for these two rods is very similar.
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Figure 3.4 Differential permeability versus applied magnetic field for 1”
induction-hardened steel rods with various values of case depth,
d.

We have two samples for each case depth. Similar results are obtained for the second set as

presented in Figure 3.4 to Figure 3.6 for induction hardened rods. The same measurements were

performed on a set of carburized samples. The results are shown in Figure 3.7 to Figure 3.9.

The feature in dB/dH that is seen clearly at around 18 Oe in the case of the induction-hardened

samples (Figure 3.5) is visible in Figure 3.8 but is much weaker for these carburized specimens
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Figure 3.5 Differential permeability versus applied magnetic field for 1”
induction-hardened steel rods with various values of case depth,
d. The standard deviation in dB/dH, computed from the three
sets of measured hysteresis loops, is of the order ±10 Gauss/Oe.

than for the induction-hardened specimens. Thus we conclude that it may be possible to use

dB/dH as an indicator of case depth for induction-hardened specimens, but not for carburized

specimens. Considering Figure 3.9 we also note that there is a large difference in dB/dH

between untreated and heat-treated but not carburized 8620 steel rods, both of which have

case depth d = 0. This is in contrast with observations on the untreated and heat-treated but

not surface hardened 4140 steel rods, Figure 3.6, in which there is little difference in dB/dH

between untreated and heat-treated but not surface hardened specimens. The observations

indicate that 2-hour tempering of 4140 steel rods at 300 ◦F (specimen 7397-1) has little effect

on the magnetic properties of the rods, whereas the heating to 1700 ◦F for 2 hours of the 8620

steel (to mimic heat treatment of the carburized rods, specimen 6840-A) effects a significant

change on the magnetic properties of the rods.
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Figure 3.6 Differential permeability versus applied magnetic field for 1”
4140 steel rods with no surface hardening. Set1-1 is ‘as received’
and 7397-1 was heat treated but not surface hardened.

3.4 Measurements of Saturation Magnetization

3.4.1 Introduction

The magnetization M depends on both the individual magnetic moments of the constituent

ions, atoms or molecules, and on how these dipole moments interact with each other [15]. The

cgs unit of M is the emu/cm3, the cgs unit of B is the gauss (G) and that of H is the Oersted

(Oe). The saturation magnetization of pure iron at room temperature is 1714 emu/cm3.

The magnetic field required to produce the saturation value varies with the relative ge-

ometry of H to the easy axes and other metallurgical conditions of the material [16]. The

approach to saturation is a structure-sensitive process. Frölich established an empirical rela-

tion between M and H in 1881, since when several other empirical equations associated with

the approach to saturation have been suggested. The ones proposed by Becker and Doring in
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Figure 3.7 Differential permeability versus applied magnetic field for 1”
carburized steel rods with various values of case depth, d.

1939 are considered most complete

M(T ) = Ms(T )
(

1− a

H
− b

H2
− · · ·

)
+ χ0H, (3.3)

M(0 ◦K) = M0

(
1− a

H
− b

H2
− · · ·

)
, (3.4)

where a, b, . . . and χ0 are constants.

It was shown in reference [16] that at the final stage of magnetization, we have the relation

M(T ) = Ms(T )
(

1− b

H2
− · · ·

)
, (3.5)

where T represents the temperature. So when M is plotted as a function of 1/H2, Ms can be

found by fitting a polynomial to the plotted data.
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6807-A (d=1.5-2 mm)

Figure 3.8 Differential permeability versus applied magnetic field for 1”
steel rods with various values of case depth, d.

3.4.2 Modeling

The surface-hardened steel rod is modeled as a two layer structure and it is assumed that the

thickness of the layer is uniform. The saturation magnetization of the core area is considered

to be Ms
core and that of the layer area is Ms

layer. Both Ms
core and Ms

layer contribute to the

total Ms of the rod by their volume fraction. Ms can be calculated from

Ms =
VcoreMs

core + VlayerMs
layer

V
, (3.6)

where Vcore is the volume of the core and Vlayer is the volume of the layer. Let r be the radius

of the rod and d be the case depth, then

Ms =
(r − d)2

r2
Ms

core +
[r2 − (r − d)2]

r2
Ms

layer, (3.7)

and finally Ms can be expressed as a second order polynomial of d

Ms = (1− 2d

r
+

d2

r2
)Ms

core + (
2d

r
− d2

r2
)Ms

layer. (3.8)
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Figure 3.9 Differential permeability versus applied magnetic field for 1”
8620 steel rods with no surface hardening. Set3-2 is ‘as received’
and 6840-A was heat treated but not surface hardened.

3.4.3 Experiment

Hysteresis loop measurements were completed on the induction hardened and carburized

1” diameter and 17.5” long steel rods. Magnetic field in the range of -1200 Oe to 1200 Oe

was supplied by the LDJ 3600 series from LDJ Electronic, Troy, MI. The measurement was

controlled by the LDJ 3600 software. A pick-up coil with 372 turns, which encircles the middle

part of the plastic holder for the sample, was used to measure the induction B. The output of

the measurements is composed of the value of applied magnetic field and that of the magnetic

induction.

By observing the B-H plot of the samples, B saturates when H is around 300 Oe. The

value of H between 800 Oe and 1200 Oe was used to find Ms. M can be calculated from

M =
B −H

4π
, (3.9)
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Then M is plotted versus 1/H2. A second order polynomial is fitted to the data points and

the M intercept is the value of Ms using

M = Ms

(
1− b

H2

)
. (3.10)

The Ms found by adding a second order polynomial to the measured data of sample 7396 is

show in Figure 3.10. M is plotted as a function of 1/H2 and Ms of this sample equals to

1756.12 emu/cm3.
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Figure 3.10 Saturation magnetization obtained by fitting a second or-
der polynominal to the measured data of sample 7396.
Ms=1756.12 emu/cm3.

3.4.4 Sources of error or uncertainty

The first results we got show the trend that the saturation magnetization Ms gets smaller

as the case depth increases, which is as expected. However, the experimental maximum value

of Ms is about 10 percent bigger that the Ms of pure iron at room temperature. One of the

possible reasons for this is that the applied current is not big enough to reach a good saturation

state. We increased the working current to twice of the original value to solve this problem, and
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the Ms decreased by about 2 percent, so it can be concluded that this is not the main source

of error. Second, the measured H may be not be the same as the magnetic field inside the

sample. In order to make the measurement more accurate, we measured the applied magnetic

field Happ instead, and calculated M using

B = 4πM + Hin, (3.11)

Hin = Happ −NdM, (3.12)

M =
B −Happ

4π −Nd
, (3.13)

where Nd is the demagnetizing factor. Nd is equal to 0.00617 for cylinder with l/d = 20.

Another possible source of error or uncertainty is the pick up coil which encircles the outside

of the plastic holder. The pick up coils measures both the flux inside the sample and the flux

in the area between the outside of the sample and the pick-up coil. The induction B was

calculated using

B =
Φ
A

, (3.14)

where Φ is the flux measured by the pick up coil and A is the cross section area of the sample.

The calculated B is bigger than its real value because the flux in the area between the sample

and the pick-coil is also included in the calculation. In order to corrected this, an equation

is calculated based on the outer diameter of the pick-up coil and the diameter of the sample.

Bcorrected is got from

Bcorrected = Bmeasured −
H(rcoil

2 − rrod
2)

rrod
2

, (3.15)

then M can be interpreted from

M =
Bmeasured − H(rcoil

2−rrod
2)

rrod
2 −H

4π
, (3.16)

Bmeasured =
Φmeasured

πrrod
2

, (3.17)

M =
Φmeasured

πrrod
2 − H(rcoil

2−rrod
2)

rrod
2 −H

4π
. (3.18)

The magnetization M is determined from four quantities rcoil, rrod, Bmeasured and H

through equation 3.16. The combined standard uncertainty of the measurement result u(M),

may be determined from [17]
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u(M)2 =
(

∂M

∂rcoil

)2

u2(rcoil)+
(

∂M

∂rrod

)2

u2(rrod)+
(

∂M

∂Bmeasured

)2

u2(Bmeasured)+
(

∂M

∂H

)2

u2(H),

(3.19)

commonly referred to as the law of propagation of uncertainty. u(x) is the standard uncertainty

associated with x. It can be calculated from equation 3.16 that

∂M

∂rcoil
= − Hrcoil

2πrrod
2
, (3.20)

∂M

∂rrod
= −Bmeasured

2πrrod
+

Hrcoil
2

2πrrod
3
, (3.21)

∂M

∂Bmeasured
=

1
4π

, (3.22)

∂M

∂H
= − 1

4π
− H(rcoil

2 − rrod
2)

4πrrod
2

. (3.23)

The standard uncertainty associated with M when H is equal to 1100 Oe was calculated

and shown in Table 3.2 for the induction-hardened steel rods and in Table 3.3 for the carburized

steel rods.

Table 3.2 The standard uncertainty associated with M when H is equal
to 1100 Oe for the induction-hardened steel rods.

Sample Profile depth with uncertainty due
to the rotation of rod(mm)

M
(emu/cm3)

u(M)
(emu/cm3)

7396 3.30± 0.02 1683 47
7395 2.27± 0.04 1702 47
7394 1.43± 0.02 1715 47
7393 0.90± 0.04 1742 45
7397 0 1762 45

3.4.5 Results

The Ms values of the induction-hardened steel rods are given in Table 3.4 while those of

the carburized steel rods are given in Table 3.5. The Ms
core of the surface-hardened steel

rods is the value of Ms when the case depth is 0, which is provided by sample 7397 for the

induction-hardened rods and sample 6840 for the carburized rods. Ms
layer can be calculated
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Table 3.3 The standard uncertainty associated with M when H is equal
to 1100 Oe for the carburized steel rods.

Sample Profile depth with uncertainty due
to the rotation of rod(mm)

M
(emu/cm3)

u(M)
(emu/cm3)

6807 1.58± 0.02 1720 47
6805 0.97± 0.01 1737 45
6804 0.80± 0.02 1766 49
6803 0.54± 0.02 1779 45
6840 0 1833 44

using equation 3.7 for each sample and the results were averaged. After putting the value of

average radius r, Ms
core and average Ms

layer into equation 3.7, the relationship between the

total Ms of induction-hardened steel rods and case depth d is

Ms = 0.89d2 − 22.50d + 1821.38. (3.24)

For the carburized steel rods,

Ms = 2.8624d2 − 71.2739d + 1871.38. (3.25)

Magnetization of the induction hardened steel rods plotted as a function of case depth is

shown in Figure 3.11, while Ms of the carburized samples plotted versus case depth is shown

in Figure 3.12. The curve representing the relationship between Ms and d calculated from

the model was added to the experimental data to make a comparison. For both induction-

hardened and carburized steel rods, Ms decreases as the case depth increases and there is good

agreement between the model and the experimental data.

Table 3.4 Saturation magnetization of induction hardened steel rods with
calculated uncertainties.

Sample Profile depth with uncertainty due
to the rotation of rod(mm)

Ms

(emu/cm3)
u(Ms)
(emu/cm3)

7396 3.30± 0.02 1756 49
7395 2.27± 0.04 1774 49
7394 1.43± 0.02 1789 47
7393 0.90± 0.04 1805 47
7397 0 1821 46
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Table 3.5 Saturation magnetization of carburized steel rods with calcu-
lated uncertainties.

Sample Profile depth with uncertainty due
to the rotation of rod(mm)

Ms

(emu/cm3)
u(Ms)
(emu/cm3)

6807 1.58± 0.02 1774 48
6805 0.97± 0.01 1780 47
6804 0.80± 0.02 1820 51
6803 0.54± 0.02 1831 46
6840 0 1871 46
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Figure 3.11 Saturation magnetization (Ms) plotted as a function of case
depth (d) of induction-hardened steel rods. A curve represent-
ing the relationship between Ms and d calculated from equa-
tion 3.24 is added to the experimental data for comparison.
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Figure 3.12 Saturation magnetization (Ms) plotted as a function of case
depth (d) of carburized steel rods. A curve representing the
relationship between Ms and d calculated from equation 3.25
is added to the experimental data for comparison.
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CHAPTER 4. ALTERNATING CURRENT POTENTIAL DROP

MEASUREMENTS ON CASE HARDENED STEEL RODS

The surface hardening process is used to improve the wear resistance of steel parts. Case

depth is essential for the quality control in the process. The electrical conductivity (or resis-

tivity) and magnetic permeability of the surface steel are modified by the hardening process.

Four-point potential drop methods can be used to determine material properties nondestruc-

tively, such as conductivity and permeability.

It was shown that case depth can be evaluated nondestructively by measuring resistivity

using four point probes method, which is based on the calibration curve established previously

for the same material [9]. Potential drops measured with two sensors that differ in the probe

spacing were used to evaluate case depth on the surface of induction hardened steel.

In this chapter, four-point ACPD measurements made on surface hardened steel rods are

described with the aim of finding a way to evaluate the case depth.

4.1 Introduction

In ACPD measurements, the current is generally injected into the specimen by direct

contact. When the current passes through the sample, it can only flow in a thin layer on the

outer surface due to the so called “skin effect”. The depth of the current carrying layer, usually

referred to “skin depth”, δ, is given by

δ =
1√

πσµrµ0f
(4.1)

Where σ is the electrical conductivity of the conductor, µr is its relative magnetic permeability,

µ0 is the permeability of free space, and f is the frequency of the applied alternating current.
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Materials of high permeability or conductivity thus have relatively small skin depths. At a

frequency of about 5 kHz, for example, ferromagnetic mild steel has a skin depth of order 0.1

mm, high conductivity materials such as aluminium and zinc have skin depths of 1–2 mm, and

low conductivity metals such as titanium and stainless steel have skin depths of 5–8 mm.

For a certain material, the skin depth varies with the frequency of the alternating current

applied, causing changes in the potential drop measured. When applied to case hardened steel,

ACPD has the potential to estimate the case depth. At low frequency when the skin depth is

bigger than the case depth, the measured potential drop is determined by both the case and

inner layer properties. When the frequency is so high that the penetration depth is smaller

than the case depth, the potential drop is mainly determined by the surface layer properties.

Thus material properties can be evaluated by making multi-frequency ACPD measurements.

4.2 Review of potential drop methods for material property measurements

The electric potential drop method has been recognized as a reliable, economic and precise

crack measurement technique. However, its application includes not only defect detection and

sizing but also material identification and determination of different geometrical and mate-

rial properties [18]. In a four-point alternating current potential drop (ACPD) measurement,

there are two current electrodes and two voltage electrodes. Alternating current is injected

into the surface of a conductor and the potential drop is measured between the voltage elec-

trodes (Figure 4.1). Another four-point potential drop method is direct current potential drop

(DCPD) method, in which direct current instead of alternating current passes through the

current electrodes.

Four-point probe method is another widely used technique for measurement of the resistiv-

ity of a semiconductor or conductor. It uses DC current and has been applied on rectangular

solids, circular disks and cylindrical materials [19], [20], [21], [22].
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Figure 4.1 Arrangement of a four-point potential drop system. Alternating
current is applied to the sample via the outer pair of current
electrodes. The potential drop is measured between the inner
pair of voltage electrodes.

4.2.1 Plate geometry

Multi-frequency four point alternating current potential drop (ACPD) measurements can be

used to determine the parameters of conductive plates such as electrical conductivity, magnetic

permeability and plate thickness non-destructively [17]. The measured pick up voltage is

matched with voltage measurements. Results are calculated from an analytical expression in

which the potential drop is expressed in terms of parameters describing the sample and probe.

A theoretical model is needed to get the values of these parameters from the measured potential

drop. In reference [23] ACPD voltage values were developed as series solutions and compared

with experimental data taken on a titanium plate. The plate thickness is approximately two-

thirds of the probe length. Generally, the ACPD measured between the two pickup points of

a four-point probe in contact with a conductive surface was written as

V =
I

2πσ
[Fk(ρ22)− Fk(ρ21)− Fk(ρ12) + Fk(ρ11)] , (4.2)

where V is the complex voltage, I is the amplitude of the current injected and σ is the

conductivity. Fk(ρ) can take different forms for half-space conductors, thick plates and thin

plates. Thick plates refer to plates that are somewhat thicker than the probe dimensions and

thin plates refer to plates that are somewhat thinner.
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In the case of a half-space conductor

Fhs(ρ) =
eikρ

ρ
+ ik

[
E1(−ikρ) +

(
1− ikh

µr

)
ln ρ

]
(4.3)

This result agrees with equation (31) in reference [24]. In (2) µr = µ/µ0 is the relative

permeability of the half-space. Two forms of Fk(ρ) in the case of plates were given

Fp(ρ) = −ik

[
coth

(
ikc

2

)
+

ikh

µr

]
ln ρ

+
∑
n

exp
[
ik
√

ρ2 + (nc)2
]

√
ρ2 + (nc)2

+ ikeikncE1

{
−ik

[√
ρ2 + (nc)2 − nc

]}
The above equation converges more rapidly for thick plates. c/2 is the plate thickness, h is the

height of the measurement circuit. k2 = iωµσ, where m is the magnetic permeability and s is

the electrical conductivity of the material.

Fp(ρ) = −ik

[
coth

(
ikc

2

)
+

ikh

µr

]
ln ρ

+
4
c

∞∑
υ=1

(2πυ)2

(2πυ)2 − (kc)2
K0

[
(ρ/c)

√
(2πυ)2 − (kc)2

]

The above equation converges more rapidly for thin plates.

Finally, an approximation for plates somewhat thinner than the probe point separations

was given

Ftp ≈ −ik

[
coth

(
ikc

2

)
+

ikh

µr

]
ln ρ, c/ρ � 1, (4.4)

The above equation agrees with equation (9) in reference [17].

In reference [17] ACPD method is used to determine the conductivity, relative permeability

and thickness of homogeneous metal plates. The frequency range used was from 1 Hz to 10

kHz.These parameters can be calculated using the analytical expressions developed. For a

symmetric, linear probe

V =
I

π

[
− ik

σ
coth(ikT ) + iωµ0I

]
ln
∣∣∣∣1 + a

1− a

∣∣∣∣ (4.5)

Where T is the thickness of the plate and a is the ratio of the position of the pickup point to

the position of the source point. An analytical expression for the electric field in a half space
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conductor, due to alternating current injected at the surface was derived in reference [25]. In

the conductor, the total electric field ET was given by

ET (r) = E(r+)−E(r−) (4.6)

Alternating current was injected and extracted by contact wires at x = ±S.

r± =
√

(x± S)2 + y2 + z2 (4.7)

The components of E were given by

Ez(r) = − iωµI

2π

ikz

(ikr)3
eikr(1− ikr), z > 0. (4.8)

Eρ(r) =
iωµI

2π

1
ikρ

{
eikz − eikr

ikr

[
1 +

(ikz)2

ikr

(
1− 1

ikr

)]}
(4.9)

The main source of uncertainty in the four-point conductivity measurement is scatter in the

voltage measurements. The uncertainty in the ACPD technique is smaller than that in eddy

current measurements [26]. The four point ACPD method is also easy to use without the

need for calibrating specimens. Moreover, the four-point approach is independent of magnetic

permeability below a certain characteristic frequency and can be used to measure conductivity

of ferrous metals such as steel.

4.2.2 Cylindrical geometry

The suitable arrangement of probes to measure case depth of materials with cylindrical

geometry by using four-point DCPD was considered in reference [9]. A surface hardened

shaft like material is modeled as a two layer structure which has two different conductivity

σ1 (resistivity ρ1) at surface hardened part and σ0 (resistivity ρ0) at inner untreated part as

shown in Figure 4.2, where d is the case depth of shaft.

Two kinds of arrangements of probes were examined. One is the arrangement in the axial

direction and the other is in the circumferential direction (Figure 4.3). For the former arrange-

ment, the lengths of four probes are always equal to each other and the sensor for measurement

on a flat plane can be used for any cylindrical parts with different diameter. By locating the
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Untreated part

Case depth d

Hardened part

Figure 4.2 Model of surface hardened shaft like material

probes in circumferential direction, high density current may flow across the boundary between

the case and the core as shown in Figure 4.3. Thus improvement of sensitivity to evaluate case

depth can be expected. Different sensors would be needed for materials with different diameter

because the lengths of four probes change with diameter.

The results show that in both cases the potential drop V increases with the case depth

d, but the increasing rate of V decreases. The distance of two probes for current input and

output should be taken larger to evaluate deeper case depth. The measurement probes should

be located near the current input-output probes to evaluate smaller case depth sensitively.

In order to examine the change in resistivity with hardening, steel specimens were quenched

under several conditions. Then the resistivity and hardness were measured. The resistivity of

the specimen ρ can be calculated from the following equation [9]:

ρ =
π

2I

(S2
1 − S2

2)
S2

V

k
(4.10)

The potential drop V was measured by the measuring probes. 2S1 is the distance of two probes
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Figure 4.3 Two ways of arranging the probe: (a) Probe in an axial di-
rection. (b) Probe in a circumferential direction. (Source: [9])

for current input and output, 2S2 is the distance of two probes for measuring potential drop.

Measured potential drop V is affected by the size and shape of the specimen. Coefficient k is

the shape correction factor, which is unity in the case of semi-infinite material. The value of

k was obtained by using finite element method (FEM). The result confirmed that resistivity,

which can be measured using four-point probe method, increases with hardening.

The case depth of induction-hardened steel rods was determined using two-point ACPD

method in [27]. The steel rod is assumed to be a two-layer structure which is uniform in the

axial direction as shown in Figure 4.2. The theory of the electromagnetic field in a homogeneous

rod was described first, then a generalized ACPD theory was developed for a layered rod. An

axially-symmetric alternating electrical current is passed down a rod and ACPD measurements

were made on the induction-hardened rod in the range of frequencies for 1 Hz to 10 kHz. The

electrical conductivity, permeability and case depth of the outer layer were adjusted to find

an optimum least squares fit of ACPD model predictions. The case depths found in this way

exceed those obtained from hardness measurement at 50 HRC by about 30% and sources of

error were discussed. The measurement system used in reference [27] is not practical for case

depth measurement in industry. However, the results suggest that a model-based approach
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using multi-frequency four-point ACPD could satisfy the industrial need for nondestructive

evaluation of case depth.

4.2.3 Delicate materials

The conventional four-point probe method is suitable for system where the conductivity is

homogeneous comparing to the electrode spacing. The atomic force microscopic (AFM) probe

is now being applied as a four-point probe to measure the superficial or local conductivities

for delicate materials. In reference [28], a four-point AFM probe with a minimized electrode

spacing as small as 1.0 µm was demonstrated.

The electrical potential drop V was derived from

V = ρ
I

2π

[
1
S1

+
1
S3
− 1

(S1 + S2)
− 1

(S2 + S3)

]
(4.11)

Which means

ρ =
2π(V/I)[

1
S1

+ 1
S3
− 1

(S1+S2) −
1

(S2+S3)

] (4.12)

The above two equations agree with equation (1.7) and (1.8) in reference [29], where the four-

point probe technique was used to measure the semiconductor resistivity. These are essentially

the basic expressions for four point DCPD on a flat surface of half space conductors. S2 is

the distance between the voltage electrodes, S1 and S3 are the distances between the current

electrodes to the nearest voltage electrodes. The mechanical contact between the probe and

the surface is enough to obtain reliable electrical contact to samples. The minimized electrode

spacing allows current to flow very close to the surface during topography scanning. The four-

point AFM probe is capable of measuring the local conductivity of fragile objects, biomaterial

surfaces and thin films on a scale of several microns.

4.3 Experiment

The steel rods were demagnetized before the ACPD measurements. A rod was put into a

plastic holder which was put into inside a 48-cm long solenoid with diameter 9-cm. The current

flowing in the solenoid was provided by a Kepco bipolar operational power supply/amplifier,
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model number BOP 50-8M. The current was reduced from a value high enough to nearly

saturate the samples (8 A) to zero through a period of 62 cycles, which took about 48 seconds.

It was checked using a gaussmeter that the residual magnetic induction of the samples is

smaller than 3 gauss.

ACPD measurements were made as a function of frequency on the induction hardened 4140

steel rods and carburized 8620 steel rods with the diameter of 1”. The range of frequency is

from 1 Hz to 10 kHz. Electrical contact with the steel rods was made using four GSS-8-7-G

probes from Interconnect Devices Inc. (IDI), which were held perpendicular to the surface of

the steel rod. The four contact points were arranged in a straight line parallel to the axis of the

rod. There is a common midpoint between the two current drive points and two pick-up points.

The distance between the current injection and extraction points of the co-linear four-point

probe used in these measurements is 74.2 mm. The distance between the symmetrically-placed

voltage pick-up points is 24.7 mm.

The rod was put on a simple plastic holder that was designed and made for the ACPD

measurements on rods with 1” diameter. The four pins are held at the bottom of the bottom

plastic block, which is attached to the bottom of a bigger top plastic block. The top plastic

block is fixed on the holder using plastic screws in such a way that the pins contact the rod

directly and the four probes points are placed parallel to the rod axis. The wires pass through

the bottom plastic block and the top plastic block (Figure 4.4).

Figure 4.4 Four point ACPD measurement of surface hardened steel rods
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The two current wires were held perpendicular to the rod surface for a distance of about

30 cm above the rod and then twisted together to reduce interwire capacitance. In order to

minimize the inductance in the measurement circuit, the two voltage pick-up wires ran along

the underside of the plastic block holding the pick-up contacts and lay as close to the surface

of the sample as possible. They were twisted together at the midpoint between the pick-up

points.

The alternating current was injected into the steel rod through the current wires by a Kepco

BOP 36-12M power supply. The sine signal from the internal function generator of a Stanford

Research Systems SR830 DSP lock-in amplifier was connected to the current programming

input of the power supply, with the power supply working as a current drive.

A high precision resistor was connected in series with the drive current circuit in order to

monitor the current and the voltage across the resistor was measured. The resistance maintains

one percent accuracy over the range of frequency for which it could be measured with an Agilent

4294A precision impedance analyzer; 40 Hz to 40 kHz. The voltage across the resistor and

that of the pick-up probe were both measured using the SR830 lock-in amplifier. In order to

make both voltage measurements using the same lock-in amplifier, a switch was used activated

by a control signal from the auxiliary analog output of the lock-in amplifier.

It is necessary to correct the experimental data for common-mode rejection (CMR) error in

the lock-in amplifier [30]. This systematic error shows itself by the fact that, when the pick-up

terminals are reversed, the measured voltage changes by a few µV . The magnitude of the

error is, therefore, similar to that of the voltage being measured, and a corrective procedure is

essential. The CMR error was eliminated by taking two sets of measurements, reversing the

pick-up terminals for the second. The two sets were then subtracted and the result divided by

two.

The ACPD measurements were controlled automatically by a computer program developed

before [30]. The lock-in amplifier was connected to the computer using a GPIB bus. The control

program sends commands to the lock-in amplifier to set all the measurement parameters, and

then the measured data are sent back to the control program. A detailed discussion of the
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program was given in reference [30].

4.4 Results

The measured real and imaginary impedance of the un-hardened rod 7397 were plotted as

a function of frequency and the results are shown in Figure 4.5. In the low-frequency range of

the ACPD measurement, the measured voltage is independent of magnetic permeability [17].

Initially, the real impedance (R) tends to a constant value (DC value) and the imaginary part

(L) is approximately zero. Then R increases approximately linearly with frequency f from its

DC value which is independent of permeability as shown in equation (9) of reference [27], the

expression for the low frequency impedance limit is

R ≈ 1
πa2σ

(
1 +

a2

48δ2
+ . . .

)
(4.13)

and

L ≈ µ

8π

(
1 +

a2

96δ2
+ . . .

)
, (4.14)

where a is the radius of the rod and δ is the skin depth that equals to 1/
√

πfσ. The leading

term for L in equation (9) of reference [27] is proportional to permeability and independent of

conductivity. Thus it is possible to determine both the conductivity and permeability of the

rod from R and L at low frequency.

Real and imaginary parts of the measured impedance were normalized (The normalized real

impedance Rnormalized of a surface-hardened rod is equal to Rhardend of that sample divided by

Runhardened of the unhardened rod, the normalized imaginary L was obtained in the same way.)

with respect to data taken on heated but not hardened samples and plotted as a function of

frequency. Results for the induction-hardened rods are shown in Figure 4.6, and those for the

carburized rods in Figure 4.7. At low frequencies the real part of the normalized impedance

indicates the overall resistance of the rod, which is bigger than that of the untreated rod as a

result of the case hardening. The normalized real impedance increases with the case depth at

low frequencies when the skin depth is bigger than diameter of the rod, which agrees with the

low-frequency part of Figure 8 in reference [27]. The imaginary part of the data is noisy at
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low frequencies because the signal is tending to a purely resistive (real) component, with zero

imaginary part, as the frequency tends to zero. The little peak in the plot of the normalized

imaginary impedance for the induction-hardened rods may be caused by a measured value that

is smaller than the real value of L for the baseline sample. Generally, the overall permeability

decreases with case depth, as shown by the decrease in the imaginary part of the normalized

impedance at low frequency.

The normalized real impedance when the frequency is 1 Hz is plotted as a function of mid-

hardness depth for both induction-hardened and carburized steel rods in Figure 4.8. A linear

fit to each data set is also shown. It can be seen that the fitted line tends to a normalized real

impedance of one when the case depth is zero (for unhardened rod) in both cases, as expected.

There is less scatter about the linear fit to the data for the induction-hardened rods than for the

carburized samples. However, even in the case of carburized rods, this technique is promising

for evaluating depth of case hardening from four-point potential drop measurements.

It was shown that the four-point potential drop measurement is a promising technique for

nondestructive evaluation of case depth. The relationship between the measured impedance Z

and case depth d in the low frequency range will be studied in more details based on the four-

point DC theory in the next period. Model-based data-fitting will be performed to estimate the

depth of case-hardening from these measurements. In addition, modeling of the AC field would

make use of the whole set of data instead of just the low frequency part, and might improve

the accuracy of measured case depth. The principle of this technique has been demonstrated

earlier by a two-point ACPD measurement on induction hardened steel rods in reference [27],

in which axially symmetric alternating current was applied. In a manufacturing environment,

four-point potential drop measurement is needed to monitor case hardened steel components.

That is because it is not practical to apply an axially-symmetric current on small components.

Also, applying an axially-symmetric current is not feasible for rapid inspections when taking

measurements on large numbers of rods
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Figure 4.5 Real and imaginary parts of the measured impedance of an
unhardened rod as a function of frequency derived from ACPD
data.
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function of frequency derived from ACPD data on induction
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CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Summary

The magnetic properties of a series of surface-hardened steel rods, including initial perme-

ability, differential permeability and saturation magnetization were studied with the aim of

evaluating the depth of case hardening nondestructively. Four-point alternating potential drop

measurements were also made on the induction-hardened 4140 and carburized 8620 steel 1”

diameter rods using a co-linear probe with pins aligned in a line parallel to the axis of the rod.

Case depth of the surface-hardened steel rods were first determined from the hardness

profiles completed on both induction-hardened and carburized samples, in order to compare

with the electromagnetic measurements.

It was shown that differential permeability measurements give a good indication of case

depth in induction hardened rods, but not carburized rods. The saturation magnetization

decreases as a second order polynomial when the case depth increases. By measuring the change

in resistivity caused by case hardening, different depth of case hardening can be determined

using the four-point ACPD technique, especially in the low-frequency range. By observing the

real part of the normalized impedance, there is good distinction between the case depths of

the samples.

5.2 Future research

The four-point ACPD measurement is a promising technique to determine the case depths

of the rod samples. The principle has been demonstrated before via a two-point ACPD mea-

surement [27] in which the current is homogeneous between the pick-up points so that the

electric field varies only in one dimension and the model is simple. Four-point ACPD is needed
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because it is inconvenient to inject an an axially-symmetric current when taking measurements

on large numbers of rods, and it is not feasible when the dimension of rod is too small [31].

Model-based data fitting would need to be performed to estimate the case depth from four-

point ACPD measurements on these samples. The accuracy of the four-point DCPD technique

will be assessed first by applying a DC model to the low-frequency part of the data. This has

the potential of developing a simple and effective method of determining case depth without

resorting to a more complex AC model. Yamashita has developed the four-point DC theory for

a finite length cylindrical rod in 1996 [22] and that for hollow conducting cylinders in 2006 [32].

A four-point AC model on cylinders has the advantage of using the whole set of data instead of

just the low frequency DC part, and may improve the accuracy of measured case depth. The

DC model would provide a useful check on the AC theory. Modeling of the AC field would be

much more complex than that of the DC field though.
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